Monatshefte für Chemie Chemical Monthly © Springer-Verlag 2000 Printed in Austria

Synthesis and Structure Elucidation of Pyrimidobenzimidazoles and Fused Derivatives II [1]. Dodecahydrobenzimidazo-[2,1-*b*]quinazolines and Decahydrobenzimidazo-[2,1-*b*]benzo[*h*]quinazolines [2]

Winfried Wendelin*, Edith Gößnitzer, and Dalal Abou El Ella^a

Institute of Pharmaceutical Chemistry, Karl-Franzens-University Graz, A-8010 Graz, Austria

Summary. The cyclization reactions of *trans*-3a-hexahydro-2-benzimidazolamine with 2-alkylidenedene- and 2-benzylidenecyclohexanones and α -tetralones, respectively, yield mixtures of two isomeric condensates each. Thorough high resolution NMR analyses (¹H and ¹³C NMR, HH-COSY, *gs*-HSQC, *gs*-HMBC, 1D TOCSY, and 1D NOE difference spectra) revealed that the corresponding isomers are in all cases linearly fused diastereomeric 12 α - and 12 β -substituted *trans*-6a α dodecahydrobenzimidazo[2,1-*b*]quinazolines and 7 α -substituted *trans*-8a β - and *trans*-8a α -decahydrobenzimidazo[2,1-*b*]benzo[*h*]quinazolines, respectively. The formation of corresponding angularly fused regioisomers was not observed so far. The stereochemistry and the tautomerism of some bases and their hydrochlorides as well as the regiospecific course of the cyclization reactions are discussed. Biological tests showed that the novel compounds don't exert remarkable antibacterial and antimycotic effects.

Keywords. Benzimidazo[2,1-*b*]benzo[*h*]quinazolines, *trans*-8a-decahydro; Benzimidazo[2,1-*b*]quinazolines, *trans*-6a-dodecahydro; Conformational analysis; Cyclizations, regiospecific; NMR Spectroscopy.

Introduction

In the course of investigations on dihydropyrimidines and their fused derivatives, *Wendelin et al.* [3–10] have prepared, among others, N²-cyclohexylhexahydro-2-quinazolinamines **1**, decahydroquinazolino[2,3-*b*]quinazolines **2**, and benzo[*h*]-fused derivatives **3** with remarkable antifungal and other pharmacological activities [7–10]. In order to improve these effects, we have designed and synthesized various compounds with near structural relationship to the above mentioned bases [1, 10]. In this paper we report on dodecahydrobenzimidazo[2,1-*b*]quinazolines **4**

^{*} Corresponding author

^a Permanent address: Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Egypt

and decahydrobenzimidazo[2,1-b]benzo[h]quinazolines 5 which represent bridged and five-ring analogues of 1, 2, and 3 (Scheme 1).

Scheme 1

A literature search revealed that compounds of type 4 and 5 are so far unknown. The more unsaturated analogues 11, 12, and the pyrimidobenzimidazoles 10 have been prepared by reaction of benzimidazolamine 6 and enones 8, 9, and 7, respectively [1, 11–13]. As has been recently reported [1, 10, 11], these annelation reactions proceed regiospecifically under addition of the ring- and amine-N of 6 to β - and carbonyl-C of enones 7–9, and afforded, after elimination of water, exclusively the bases 10–12. The common feature of these condensates is the enamino group in the 1,2,3-position of the pyrimidobenzimidazole unit. Regioisomers 13 with enamino groups in the 5,4,3-position and fused derivatives 14 and 15, respectively, have not been generated (Scheme 2). At this point it should be mentioned that 2-imidazolin- as well as di- and tetrahydro-2-pyrimidinamines have been shown to react with enones in an analogous regiospecific way [4, 7–10].

Synthesis and Structure of Pyrimidobenzimidazoles

In the course of the literature search we also found reports on more unsaturated benzimidazo[2,1-*b*]quinazolines **16** and isomeric benzimidazoquinazolinones **17–19** which have been synthesized by annelation reactions of **6** with 2-hydroxymethylenecyclohexanone [14], 2-oxocyclohexanecarboxamide [15], and 2-aminobenzoyl chloride [16].

Reports on pharmacological properties exist so far only in the case of substituted pyrimidobenzimidazoles of type **13** which exert neuroleptic effects [17] and PAF antagonism [18].

Results and Discussion

Synthesis of the target compounds 4 and 5

Target compounds 4 and 5 should be synthesized (in analogy to 11 and 12) by reaction of (racemic) *trans*-3a-hexahydro-2-benzimidazolamine 20 with 2-benzylidene- and alkylidenecyclohexanones 8a–d [19, 20] and α -tetralones 9c,e [21]. 20, first mentioned in Ref. [22] as a by-product of the synthesis of 1,2-cyclohexylenediguanidine, was prepared from *trans*-1,2-cyclohexanediamine and cyanogen bromide.

After annelation of **20** with enones **8** and **9**, the generated bases were isolated in the usual way. According to TLC, all bases and hydrochlorides seemed first to be homogenous, but NMR analyses revealed that in all cases mixtures of two (racemic) diastereomers had been generated. Thus, the products were mixtures of 12α - and 12β -substituted *trans*- $6a\alpha$ -1,2,3,4,6,6a,7,8,9,10,10a,12-dodecahydrobenzimidazo[2,1-*b*]quinazolines **4a**–**dC** and **T**, and of 7α -substituted *trans*- $8a\beta$ and *trans*- $8a\alpha$ -5,6,7,8a,9,10,11,12,12a,13-decahydrobenzimidazo[2,1-*b*]benzo-[*h*]quinazolines **5c,eC** and **T**.

C and T in the compound numbers point to the *cis*- or *trans*-position of H-10a and H-12, characteristic of diastereomers **4C** and **T**, and of H-8a and H-7, significant for the benzo-fused diastereomers **5C** and **T**, respectively. Regioisomers of type **21C** and/or **T** and **22C** and/or **T** have so far neither been detected as components of the crystalline products nor in the evaporated filtrates (Scheme 4). As for the use of the designations α and β , and to the formulae in Schemes and Figures, cf. Refs. [23–25].

Scheme 4 [23, 24]

Treatment of the crude mixture of the 7α -(4-chlorophenyl) compounds **5eC** and **5eT** with hydrochloric acid yielded a mixture of 7-(4-chlorophenyl)-5,6,8a,9,10,11,12,12a-octahydrobenzimidazobenzoquinazoline hydrochloride **23e** · HCl and salt **5eT** · HCl (Scheme 6).

Elucidation of structure and stereochemistry of condensates **4C,T** and **5C,T** by NMR spectroscopy

The structures and (partly) conformations of bases 4a-d as well as 5c,eC and T and their hydrochlorides, respectively, were established by high resolution NMR analyses based upon ¹H and ¹³C NMR, HH-COSY [26], *gs*-HSQC [27], *gs*-HMBC [28], NOE difference [29], and 1D TOCSY [30] experiments. The procedure employed for the structure elucidations is lined out in the following on the example of the two-component mixture of the hydrochlorides of bases 4cC and 4cT. The numbering of H- and C-atoms in the following paragraphs refers to the (continuous) numbering of the respective bases and hydrochlorides as applied in Tables 1,2 and Figs. 1–3.

Assignment of C and H signals, gross constitution of the dodecahydrobenzimidazoquinazoline skeleton of $4cC \cdot HC1$ and $4cT \cdot HC1$

The ¹H NMR spectrum of products $4cC \cdot HCl$ and $4cT \cdot HCl$ showed in scarcely occupied regions (NH-protons, *o*-protons of the phenyl substituents, methine protons in 6a, 10a, and 12-position) two sets of signals with an intensity ratio of 2:1

for the two (1:1)-condensates. In accordance with that fact, but more distinctly, two signal sets appear in the 13 C NMR spectrum (Table 1).

Typical triplet-doublet signals for the axial protons H-6a α and H-10a β , respectively, between 2.6 and 3.3 ppm can serve as a starting point for tracing the H-7*ax*, *eq* and H-10*ax*, *eq* coupling chains of the cyclohexane ring in the HH-COSY spectra. Further evalution of the homonuclear ¹H shift correlation and the 1D TOCSY spectra with the assignment of H-8*ax*, *eq* and H-9*ax*, *eq* complete the skeleton of the cyclohexane moiety. The observed homoallylic long-range coupling and the ⁴J-coupling between methine protons H-12 and the nearly equivalent methylene protons at C-4 on the one hand and the aromatic *o*-protons H-14,18 on the other afford the entrance into the cyclohexene moiety and the phenyl ring of **4cC** · HCl and **4cT** · HCl. Two sets of two signals each for NH-protons H-5 and H-6 argue for N,N,N',N''-tetrasubstituted guanidine moieties as links of the cyclohexane and benzylcyclohexene substructures.

Inspection of the *gs*-HSQC spectra enables the assignment of H-bearing carbon atoms. Additionally, the *gs*-HMBC spectra reveal long-range connectivities, among others, between the centrally situated methine proton H-12 and C-5a of the benzimidazol unit, C-12a, C-4a, C-1 and C-4 of the cyclohexene ring, and C-13 as well as C-14,18 of the phenyl substituent. Corresponding long range connectivities of the methylene protons at C-1 and C-4 and of the aromatic *o*-protons H-14,18 with C-12 are also visible.

Combination of the above informations afforded the chemical shifts of all hydrogen and carbon atoms of $4cC \cdot HCl$ and also of $4cT \cdot HCl$ with only few insecurities (the signals for C^8H_2 - and, partly, C^1H_2 - and C^2H_2 -protons of the minor product $4cT \cdot HCl$ coincided with the signals of the main product $4cC \cdot HCl$, see Table 1). However, the data showed only that both products possess the skeleton of a dodecahydrobenzimidazoquinazoline.

Orientation of the annelation reaction: both products are regioisomers of type **4** and represent diastereomeric trans- $6a\alpha$ - 12α - and 12β -phenyldodecahydrobenzimidazo[2,1-b]quinazolines **4cC** and **4cT**

Depending on the (*i*) regio- and (*ii*) stereocontrol of the annelation reaction of *trans*-hexahydrobenzimidazolamine **20** with benzylidenecyclohexanone **8c**, the two condensates and their hydrochlorides could *a priori* be (*i*) regioisomers of type **4c** and/or **21c**, and (*ii*) moreover, in case of each regioisomer, again two (racemic) diastereomers each, *i.e. trans*-6a α -12 α - and 12 β -phenyldodecahydrobenzimi-dazo[2,1-*b*]quinazolines **4cC** and **4cT**, and 5 α -phenyl-*trans*-7a β -and *trans*-7a α -phenyldodecahydrobenzimidazo[1,2-*a*]quinazolines **21cC** and **21cT** [23, 24], or tautomers thereof (Scheme 5).

Careful weighing and comparison of the chemical shifts of the corresponding protons in 6a,7,8- and 10a,10,9-position of the cyclohexane rings gave unequivocal hints that both components of the mixture, $4cC \cdot HCl$ and $4cT \cdot HCl$, are regioisomers of type 4.

In particular, the quartet-doublet signal at 0.78 ppm ($4cC \cdot HCl$) and the tripletdoublet at 2.61 ppm ($4cT \cdot HCl$) are distinctly highfield shifted by approximately

Scheme 5 [24]

0.7 ppm and 0.6 ppm. In case of $4\mathbf{cC} \cdot \mathrm{HCl}$, the characteristic quartet-doublet at 0.78 ppm is obviously generated by coupling with one geminal, two *anti*-periplanar, and only one equatorial coupling partners $({}^{2}J_{gem} = {}^{3}J_{ax,ax} = 12.3 \,\mathrm{Hz}, {}^{3}J_{ax,eq} = 3.2 \,\mathrm{Hz})$ and must hence belong to proton H-7ax or H-10ax of $4\mathbf{cC}$ or $4\mathbf{cT} \cdot \mathrm{HCl}$, or H-8ax or H-11ax of regioisomer $21\mathbf{cC}$ or $21\mathbf{cT} \cdot \mathrm{HCl}$. In case of $4\mathbf{cT} \cdot \mathrm{HCl}$, the triplet-doublet at 2.61 ppm $({}^{3}J_{ax,ax} = 12.2 \,\mathrm{Hz}, {}^{3}J_{ax,eq} = 3.2 \,\mathrm{Hz})$ belongs unambiguously to an axially oriented proton at a bridgehead (H-6a or H-10a, H-7a, H-11a) of one of the four isomers.

In case of both compounds, $4cC \cdot HCl$ and $4cT \cdot HCl$, the highfield shifts of the mentioned protons point towards anisotropic shielding effects of facing phenyl rings. A glance at the formulae of the four possible isomers showed that the observed anisotropy effects are only present in case of the linearly fused regioisomers $4cC \cdot HCl$ and $4cT \cdot HCl$ with near spatial vicinity of the phenyl ring in position 12 and protons H-10ax and H-10a, respectively, but not in case of their regioisomers $21cC \cdot HCl$ and $21cT \cdot HCl$. Further studies revealed that the anisotropy effect of the phenyl ring in $4cC \cdot HCl$ influences not only H-10ax, but to a similar extent (-0.6 ppm) also the geminal proton H-10eq (1.45 ppm). The linear structures of $4cC \cdot HCl$ and $4cT \cdot HCl$ were independently also proved by the HH-COSY spectra of the mixture, which showed in case of both compounds long-range couplings between H-12 and H-10a.

Additional considerations using *Dreiding* models revealed that the anisotropy effect of the phenyl ring at C-12 towards H-10*ax* α , observed in case of **4cC** · HCl, can only be expected if these groups are arranged *cis* and at the α -face (compare Fig. 1 and Ref. [23]). Consequently, as a characteristic of this diastereomer, H-12 and H-10a β are also oriented *cis*, but situated at the β -face. These conditions are fulfilled only in case of *trans*-6a α -12 α -phenyldodecahydrobenzimidazo[2,1-*b*]quinazoline **4cC** · HCl. *Vice versa*, the anisotropy effect of the phenyl ring towards H-10a β of **4cT** · HCl can only emerge in case of a *cis*-arrangement of the phenyl substituent at C-12 and H-10a β at the β -face, resulting in a *trans*-position of

Table 1. NMR data of 12α - and 12β -phenyl-1,2,3,4,5,6a,7,8,9,10,10a,12-dodecahydro-*trans*-6a α -benzimidazo[2,1-*b*]quinazoline hydrochlorides **4cC** · HCl and **4cT** · HCl (400 MHz ¹H / 100 MHz ¹³C, *DMSO*-d₆, 300 K) [23]

	$\begin{array}{c} 10 \\ 9 \\ 8 \\ 7 \\ H \\ (\alpha) \end{array}$	N 12 H 13 H	16 15 14 12a 2 3 3 8	$\begin{array}{c} 10 \\ 10a \\ 6a \\ 7 \\ H \\ (\alpha) \\ H \end{array}$	$ \begin{array}{c} 17 & 16 \\ 18 & 15 \\ H^{13} & 14 & 1 \\ 15a & 12a & 2 \\ 15a & 15a & 3 \\ 15a & 15a & 3 \\ 15a & 12a & 3 \\ 15a & 15a & 3 \\ $	
	4c0	C · HCl [24]		4cT · HCl [24]		
		¹³ C	${}^{1}\mathrm{H}^{\mathrm{multiplicity}}({}^{3}J_{\mathrm{HH}}/\mathrm{Hz})$	¹³ C	${}^{1}\mathrm{H}^{\mathrm{multiplicity}}({}^{3}J_{\mathrm{HH}}/\mathrm{Hz})$	
1	CH ₂	24.57	<i>a</i> :1.39 ^m	24.93	<i>a</i> : 1.35 ^m	
			$b: 1.64^{\rm m}$		$b: 1.55^{m}$	
2	CH_2	21.36	c: 1.50 concealed	21.52	c: 1.52 concealed	
			d: 1.68 concealed		d: 1.70 concealed	
3	CH_2	21.82	$1.52^{\text{m, broad}}$	21.77	1.67 ^{m, broad}	
4	CH_2	25.50	2.26^{m}	25.29	2.33 ^m	
4a	С	125.44	-	126.95	-	
5	NH	-	10.89 ^s	—	11.05 ^s	
5a	С	154.77	-	155.60	-	
6	NH	-	8.66 ^s	_	8.55 ^s	
6a	СН	61.91	3.25^{t} (12.3/3.2)	61.43	3.24^{t} (12.2/3.2)	
7	CH_2	28.77	$ax: 1.48^{quart} (13.0/3.2)$	28.81	$ax:1.47^{quart}$ (12.4/3.2)	
_			$eq: 2.19^{\rm uu}$ (13.0/3.2)		$eq: 2.18^{\text{dm}} (12.4)$	
8	CH_2	23.36	f: 1.22 ^m , broad	23.36	f: 1.24 (?)	
	~~~		$g: 1.77^{\text{diff}} (12/3.2)$		g: 1.71 (?)	
9	$CH_2$	23.68	$ax: 1.19^{quart} (12.4/3.3)$	23.56	$ax: 1.05^{quart} (12.8/3.2)$	
10	CT I	20.65	$eq: 1.64^{\text{d}} \text{ m} (12.4)$	26.20	$eq:1.80^{\text{d}} \text{ m} (12.8)$	
10	$CH_2$	28.67	$ax: 0.78^{quart} (12.3/3.2)$	26.38	$ax: 1.37^{quart} (12.6/3.4)$	
	~~~	<b>(– (</b> )	$eq: 1.45^{\text{d}} \text{ m} (12.3)$	60.10	$eq: 2.04^{\text{d}} \stackrel{\text{m}}{=} (12.6)$	
10a	СН	67.68	3.20° ° (12.3/3.2)	63.49	2.61° ° (12.2/3.2)	
12	СН	62.42	4.82°	60.04	4.75	
12a	C	108.37	-	109.80	_	
13	C	140.52	- 7.21 ^d d (0.0/1.4)	136.90	-	
14/18	CH	127.55	/.31° ° (8.0/1.4)	127.35	$7.22^{\circ} \circ (7.8/1/2)$	
15/17	СН	128.76	7.34-7.42	129.28	7.39 ^{°°} (7.2/2)	
10	CH	128.67	1.34-1.42	129.24	1.37° (12.3)	

H-10a β and proton H-12 at the opposite α -face - steric relations which exist in case of the 12 β -phenyl diastereomer **4cT** · HCl.

Analogous NMR analyses of the originally prepared (1.2:1)-mixture of bases showed that the components represented, as expected, corresponding diastereomeric bases **4cC** and **4cT**, respectively.

Stereochemistry of bases 4cC and 4cT and their hydrochlorides

The stereochemistry of **4cC** and **4cT** and their hydrochlorides could partly already be deduced by interpretation of the above cited chemical shifts and signal patterns of the various protons. Succeeding ¹H{¹H} 1D NOE difference measurements afforded valuable complementary informations. They proved again and independently the postulated structures of bases **4cC** and **4cT** and their salts, allowed to ensure the ¹H assignments especially of those signals which are concealed among the non-first-order aliphatic region, and provided substantial informations for the establishment of provisonal stereo formulae. Table 1 shows the complete signal sets, Fig. 1 possible stereoformulae of salts **4cC** · HCl and **4cT** · HCl with arrows symbolizing NOEs of diagnostic value.

In particular, irradiation of the singlet of H-12 (4.82 ppm, Fig. 1) of $4cC \cdot HCl$ caused a distinct enhancement of the triplet-doublet for H-10a β at 3.20 ppm; the C⁴H₂-protons (2.26 ppm) gave NOEs with the N⁵H-protons (10.89 ppm). These interactions prove again the linearly fused structure of a benzimidazo[2,1-*b*]quinazoline and, moreover, the *cis*-arrangements of H-12 and H-10a β , significant for diastereomer $4cC \cdot HCl$. In accordance with that, NOEs between H-10*ax* α (0.78 ppm) and the *o*-protons H-14,18 (7.31 ppm) indicated the *cis*-arrangement of H-10*ax* and the phenyl group at the α -face [23].

In case of diastereomer $4\mathbf{cT} \cdot \mathrm{HCl}$, the linear structure could similarly be deduced from NOEs between H-12 (4.73 ppm) and H-10eq (2.04 ppm), and N⁵H and C⁴H₂ (11.05 and 2.33 ppm), respectively. Strong NOEs between H-10a β (2.61 ppm) and the *o*-protons H-14,18 (7.22 ppm) corroborated the *cis*-arrangement of H-10a and the phenyl ring at the β -face, and accordingly the *trans*-position of H-10a β and H-12 at the opposite α -face, which is characteristic of the diastereomer $4\mathbf{cT} \cdot \mathrm{HCl}$.

Further NOEs recorded for $4cC \cdot HCl$ and $4cT \cdot HCl$ enabled the assignment of proton signals hidden in the strongly overlapped region between 1.3 and 2.2 ppm and the determination of their position. In particular, NOEs could be observed between the axially upward directed protons H-6a α , H-8ax, and H-10ax, and the downward directed protons H-10a β , H-7ax, and H-9ax, respectively. The observed interactions reveal, just as the interpretation of the characteristic ¹H signal multiplicity of the respective protons (Table 1), the chair forms of the fused cyclohexane rings of $4cC \cdot HCl$ and $4cT \cdot HCl$. The same chair conformation was found in case of the cyclohexylene moiety of *trans*-hexahydrobenzimidazolamine hydrobromide $20 \cdot HBr$ (see Experimental).

The signals of the four pairs of methylene protons of the cyclohexene ring of $4cC \cdot HCl$ and $4cT \cdot HCl$ appeared in the range of 1.38/1.59 ppm (H_a and H_b of C¹H₂) and 2.29 ppm (C⁴H₂). Distinctly differentiated signals for the geminal proton pairs with patterns characteristic of axially and equatorially directed protons, as observed in case of the cyclohexane rings and expected for stable half-chair or boat conformations [1], didn't emerge. These findings argue for conformational flexibility of the cyclohexene rings.

On the other hand, NOEs between protons H_b and H-12 reveal that these protons are located in close spatial proximity in both diastereomers. Studies of *Dreiding* models showed that this could be realized in case of half-chair as well as

Synthesis and Structure of Pyrimidobenzimidazoles

Fig. 1. Stereoformulae of diastereomers 4c,dC · HCl and 4c,dT · HCl [23,24] (arrows indicate observed NOEs)

of boat conformations of the cyclohexene ring. Figure 1 shows exemplarily stereoformulae for $4cC \cdot HCl$ and $4cT \cdot HCl$ with half-chair conformations C and C' of the cyclohexene moiety. In case of conformers C, protons H_b and H-12 are at one face, and protons H_a and the phenyl substituent are at the opposite face of the ring systems. In case of conformers C', protons H_b and H-12 are also in spatial vicinity, but *trans*-arranged. H_a and phenyl group are in this case located at opposite faces of the ring system. Analogous stereo formulae with boat conformations D and D' of the cyclohexene ring could also be formulated (Fig. 2).

The observed highfield shift of the signals for protons H_a could be caused either by the shielding of H_a by facing phenyl rings in *cis*-position, as *e.g.* shown in Fig. 1 for **4cC** · HCl, or by the preferably axial position of protons H_a as pointed out for **4cT** · HCl. Both types of conformers are consistent with the so far available data and represent flexible conformations. However, further NMR investigations will be necessary to clarify whether the protons H-12 and H_b of the two diastereomers are *cis*- or *trans*-arranged in *DMSO*-d₆ solution.

Finally, the observed strong NOEs between the methine protons H-12 and the o-protons (H-14,18) of the phenyl substituent should be mentioned. They point, together with the above described (phenyl ring caused) highfield shifts of the flanking protons (H-10ax and eq in case of $4cC \cdot HCl$, H-10a in case of $4cT \cdot HCl$) and studies of *Dreiding* models, towards the existence of rotationally hindered phenyl substituents and an approximately perpendicular arrangement of phenyl and dihydropyrimidine ring in both diastereomers.

Peculiarities concerning the structure elucidation of condensates 4a,b,dC and T

Analogous NMR investigations were accomplished with products **4a,b** and **d** generated by the reactions of *trans*-hexahydrobenzimidazolamine **20** with 2-alkylidenecyclohexanones **8a,b** and the 2-(*p*-methylbenzylidene) derivative **8d**, and with salts **4a,d** · HCl. As anticipated above, all products turned out as mixtures of two (racemic) diastereomers, *i.e.* of 12α - and 12β -substituted *trans*-6a α -dodeca-

Fig. 2. Stereoformulae of diastereomers 4a,bC and 4a,bT (arrows indicate observed NOEs; if marked with an asterisk, they were found only in case of 4bC or 4aT)

hydrobenzimidazoquinazolines 4a,b,dC and T (Scheme 4). Regiospecifity and diastereoselectivity of the ring closure reactions correspond to the above deduced findings for the 12-phenyl analogues 4cC and 4cT.

In addition, it should be noted that in case of the 12-propyl and 12-isopropyl compounds 4a and bC the *cis*-position of protons H-12 and H-10a β could again be ascertained due to mutual NOEs (Fig. 2). In accordance with these findings, complementary NOEs between H-10ax α and methine and methyl protons of the isopropyl group (H-13 and H-14), observed in case of 4bC, indicate the *cis*arrangement of these substituents at the α -face. In case of diastereomers **4a,bT** the *trans*-position of H-12 and H-10a β follows from the NOEs between H-10a β and protons H-13 and H-14 of the propyl and isopropyl substituent, respectively. Complementary, the *trans*-position of H-12 and H-10a β in **4aT** can be deduced from NOEs between H-12 and H-10 $ax\alpha$, which show the *cis*-position of these protons at the α -face. In case of the isopropyl compound **4bC** the observed NOEs between methyl protons of the isopropyl group (H-14) and protons H_b at C-1, as well as between protons H-12 and H_a at C-1, indicate cis-arrangement of these proton pairs. Figure 2 shows possible stereoformulae of **4a,bC** and **T**, whereby the cyclohexene moieties are now exemplarily presented in slightly twisted boat conformations D and D'.

Structure elucidation of decahydrobenzimidazo[2,1-*b*]*benzo*[*h*]*quinazolines* **5c,eC** *and* **T**; 7-(4-*chlorophenyl*)*octahydrobenzimidazo*[2,1-*b*]*benzo*[*h*]*quinazoline* **23eC**

The annelation reactions of hexahydrobenzimidazolamine **20** with the 2-benzylidene- α -tetralones **9c** and **e** afforded again mixtures of (racemic) diastereomers which represent the 7α -aryl-*trans*-8a β - and *trans*-8a α -5,6,7,8a,9,10,11,12,12a,13-decahydrobenzimidazo[2,1-*b*]benzo[*h*]quinazolines **5c,eC** and **T**, respectively. The transformation of the (0.7:1)-mixture of **5cC** and **5cT** into the hydrochlorides yielded a (0.8:1)-mixture of **5cC** · HCl and **5cT** · HCl. In contrast, treatment of the crude (1.5:2)-mixture of 7α -(4-chlorophenyl) compounds **5eC** and **5eT** with ethanolic hydrochloric acid, evaporation of the solvent, and recrystallization of the residue generated a mixture of 7-(4-chlorophenyl)-*trans*-8a α -5,6,8a,9,10,11,12,12a-octahydrobenzimidazo[2,1-*b*]benzo[*h*]quinazoline hydrochloride (**23e** · HCl) and **5eT** · HCl.

Scheme 6 [24]

Detailed NMR studies as in the case of 4cC and 4cT showed that the benzimidazopyrimidine substructures of 5c,eC and T, with cyclohexane rings in chair conformation and perpendicularly arranged aryl substituents at C-7, are nearly identical with the corresponding substructures of 4cC and 4cT. The assignment of the protons of the fused benzene ring of salts 5c,eC and $T \cdot HCl$ was successful starting from the downfield shifted signals for the aromatic proton H-1 which gave NOEs to N¹⁴H.

Two pairs of signals with a rather similar signal pattern in the range of 1.8–2.2 and 2.5–2.8 ppm were characteristic of the ethano bridges between the pyrimidine and benzene rings. On account of *gs*-HSQC and *gs*-HMBC experiments, the signals at higher field could be assigned to the methylene protons H_a and H_b at C-6, neighbouring the chiral center C-4, and the signals at lower field to the benzyl protons H_c and H_d at C-5 (Table 2).

NOEs between methine protons H-7 and H_b at C-6 of **5c,eC** and **T** · HCl, respectively (Fig. 3), indicated that these protons are in spatial vicinity and could be *cis*-arranged. The signals for protons H_a are slightly highfield shifted in comparison with the signals for H_b which points towards anisotropic effects of the facing phenyl rings at C-7. Figure 3 shows a stereoformula with puckered (half-chair-like) conformation of the cyclohexadiene moiety for diastereomer **5cC** · HCl which is consistent with these findings. On the other hand, protons H_a and phenyl group could also be arranged *trans* and at opposite faces of the ring systems. The highfield shift of H_a could in this case result from the axial position. The conformational formula for diastereomer **5cT** · HCl in Fig. 3 is consistent with this second, alternative model.

Additional informations about the conformation of the cyclohexadiene moiety followed from the detailed analyses of the typical signal patterns for protons **Table 2.** NMR data of 7α -phenyl-5,6,7,8a,9,10,11,12,12a,13-decahydro-*trans*-8a β - and *trans*-8a α -benzimidazo[2,1-*b*]benzo[*h*]quinazoline hydrochlorides **5cC** · HCl and **5cT** · HCl (400 MHz ¹H / 100 MHz ¹³C, CDCl₃, 300 K) [23]

	12 + 131 $11 + 12a$ $12a$ $12a$ $12a$ $12a$ $12a$ $12a$ $12a$ $1aa$	$\begin{array}{c} (+) H & 1 \\ (+) H & 14 & 14b \\ (+) H & 14 & $		12 H 131 12a 9 H 20 19 18	$\begin{array}{c} \begin{array}{c} 1^{(-)} H & 1 \\ (+) & 1^{14} & 14b \\ 1^{13a} & 1^{14a} & 4a \\ 1^{7} & 6a & 6 \\ (\alpha) & 7 & 6a \\ 15 & H \\ 16 \\ 17 \end{array}$
	5cC ·	HCl [23, 24]	5cT · HCl [23, 24]		
		¹³ C	${}^{1}\text{H}^{\text{multiplicity}}$ (${}^{3}J_{\text{HH}}/\text{Hz}$)	¹³ C	${}^{1}\mathrm{H}^{\mathrm{multiplicity}}$ (${}^{3}J_{\mathrm{HH}}/\mathrm{Hz}$)
1	CH	122.19	7.88^{d} (7.6)	122.29	7.93 ^d (7.6)
2	CH	127.43	$7.37^{t}(7.8)$	127.51	7.38 (concealed)
3	CH	128.73	7.23^{t} (7.6)	128.78	7.22^{t} (7.6)
4	CH	127.54	7.08^{d} (7.4)	127.63	7.11 ^d (7.8)
4a	С	127.01	_	126.85	_
5	CH_2	27.60	$c: 2.61^{d t} (15.0/7.4)$	27.69	<i>c</i> : 2.66 ^{d t} (15.6/7.8)
			<i>d</i> : 2.75 ^{d t} (15.2/7.6)		<i>d</i> : 2.79 ^{d t} (14.6/7.3)
6	CH_2	23.51	$a: 1.73^{\mathrm{m}}$, partly concealed	24.17	<i>a</i> : 1.97 ^{d t} (15.0/7.6)
			<i>b</i> : 1.94 (13.3/6.8)		<i>b</i> : 2.24 ^{d d d} (16.2/9.1/7.2)
6a	С	110.11	_	111.18	-
7	CH	62.14	5.13 ^s	60.11	4.99 ^s
8a	CH	67.87	3.28 ^{t d} (12.0/3.2)	63.74	2.68 ^{t d} (12.2/23.2)
9	CH_2	28.75	ax: 0.80 ^{qua/d} (12.6/3.2)	26.56	ax: 1.45 ^{qua/d} (12.0/3.6)
			<i>eq</i> : 1.49 ^d (12.2)		<i>eq</i> : 2.08 ^{d m} (12.2)
10	CH_2	23.83	ax: $1.19^{m, broad}$	23.51	ax: 1.07 ^{qua/t} (12.8/3.6)
			$eq: 1.66^{d m} (11.2)$		$eq: 1.80^{d} (12.8)$
11	CH_2	23.69	$ax: 1.38^{qua/m}$ (13.0)	23.69	$ax: 1.42^{qua/m}$ (12.8)
			$eq: 1.82^{d} (12.4)$		<i>eq</i> : 1.77 ^d (12.4)
12	CH_2	28.85	ax: 1.28 ^{qua m} (12.6)	28.85	ax: 1.32 ^{qua/m} (13.0/3.2)
	_		$eq: 2.17^{d}$ (12.6)		$eq: 2.18^{d} (12.4)$
12a	СН	62.09	$3.32^{t d}$ (12.0/3.2)	61.62	$3.31^{t d}$ (12.0/3.2)
13/14	2NH	_	9.05 ^s /11.63 ^s	_	9.01 ^s /11.81 ^s
13a	С	155.97	_	156.73	_
14a	С	125.18	_	125.62	_
14b	С	134.00	_	134.98	_
15	С	140.05	_	136.47	_
16/20	СН	127.96	7.37 ^b	127.68	7.28 ^m
17/19	СН	128.96	7.38 ^b	129.51	7.41 ^{t d} (7.2/2)
18	CH	129.07	7.38 ^b	129.66	7.39 ^m

 H_a-H_d . These signals (each approximately a five line system, line distance about 7.4 Hz, intensity ratio 1:2:2:2:1) resulted from the partial overlap of the six lines of doublet-triplets, generated each by one geminal (~14.7 Hz) and two vicinal couplings (~7.3 Hz) with neighbouring protons of the ethano bridges. These

Synthesis and Structure of Pyrimidobenzimidazoles

Fig. 3. Stereoformulae of diastereomers **5c,eC** · HCl and **5c,eT** · HCl [23,24] (arrows indicate observed NOEs)

findings argue against stable conformations with axially and equatorially directed protons, and point towards the existance of flexible conformations of ethano bridges and the whole cyclohexadiene moieties of **5c,eC** and **T** in solution. Nevertheless, it is so far not clear whether protons H-7 and H_b are *cis*- or *trans*-arranged and, accordingly, if the molecules exist (in the average) as conformers of type *E* or *E'*.

For the NMR analysis of 7-(4-chlorophenyl)octahydrobenzimidazobenzoquinazoline hydrochloride $23eC \cdot HCl$ with aromatic pyrimidine ring see Experimental.

Tautomerism of bases 4C and T, 5C and T, and their hydrochlorides

The appearence of two sharp singlets each for the NH-protons H-5 and H-6 of salts **4a,c,dC** and $\mathbf{T} \cdot \mathbf{HCl}$, and H-13 and H-14 of salts **5c,eC** and $\mathbf{T} \cdot \mathbf{HCl}$, respectively, showed that these salts contained stable guanidinium ions with 2 substituents at each of the three nitrogen atoms as substructures. In contrast, no definite signals for NH-protons could be observed in the ¹H NMR spectra of solutions of the bases **4,5C** and **T** in *DMSO*-d₆. These findings pointed towards a rapid exchange of NH-protons between N-5 and N-6 (N-13 and N-14) and the existance of an equilibrium between the possible tautomeric forms **4C,TI** and **II** and **5C,TI** and **II**, respectively, in *DMSO*-d₆ solutions (Scheme 7).

Scheme 7 [24]

However, in case of the mixture of *trans*- $6a\alpha$ - 12α - and 12β -propyldodecahydrobenzimidazoquinazoline **4aC** and **4aT**, the ¹H NMR spectrum in CDCl₃ showed a broad signal for NH-protons at 4.68 ppm, which on irradiation gave scalar enhancements of the vicinal hydrogen atoms H-6a of **4aC** (3.01 ppm) and **4aT** (2.91 ppm), but no NOE with the methylene protons at C-4. This finding pointed towards a preferred existence of **4aC** and **4aT** as tautomers I in CDCl₃.

For reasons of simplification, the bases **4** and **5** in this paper are formulated, vicariously for the actual mixture of tautomers, as tautomers **I** with the mobile NH-proton attached to the (more basic) nitrogen atoms N-6 and N-13 of the imidazol moieties of **4** and **5**, respectively.

Mechanism of the regiospecific annelation reactions and a note concerning their diastereoselectivity

The following discussion is carried out on hand of the annelation reaction of hexahydrobenzimidazolamine (3aS,7aS)-20 (as a substitute for racemic *trans*-3a-20) with benzylidenecyclohexanone 8c and refers to Scheme 5.

According to earlier accomplished NMR investigations [31], enone **8c** exists in solution as (*E*)-isomer, and we assume that the enone participates in this form in the reaction. The cyclization reactions obviously start with a regiospecific (but not diastereospecific) addition of N-3 of *S*,*S*-**20** to the β -carbon atom of enone (*E*)-**8c** from the *Re*-face (backside, a) or *Si*-face (front, b) of **8c** (Scheme 5; a: dotted arrow, b: standard arrow). Subsequent addition of the amino group to the carbonyl group and elimination of water yields in case (a) the (6a*S*,10a*S*,12a*R*)-enantiomer of *trans*-6a α -12 α -phenyldodecahydrobenzimidazo[2,1-*b*]quinazoline **4cC** with *cis*-arranged hydrogen atoms H-10a and H-12, and in case (b) the (6a*S*,10a*S*,12a*S*)-enantiomer of 12 β -diastereomer **4cT** with H-10a and H-12 in *trans*-position. Analogous reaction of (3a*R*,7a*R*)-**20** with (*E*)-**8c** yields the mirror image isomers (6a*R*,10a*R*,12a*S*)-**4cC** and (6a*R*,10a*R*,12a*R*)-**4cT**.

As for the diastereoselectivity of the reaction, it must be stated that the total amounts and ratios of diastereomers of type C and T in the reaction mixtures were only determined in case of 4b and 4c. The NMR analyses of the respective crude products showed that they consisted of a (1.5:1)-mixture of 4bC and 4bT and of a (1:1)-mixture of 4cC and 4cT in total yields (C+T) of ~52% and ~66%, respectively, and some impurities each. Hints at corresponding regioisomers 21 didn't emerge. Accordingly, the annelation reactions seemed to take place, so far as investigated, regio specifically, but without distinct diastereoselectivity.

Attempts to produce mixture with distinct excess of 12α - or 12β -phenyl diastereomer, **4cC** or **4cT**, from amine **20** and enone **8c** by variation of solvent (toluene, dimethylformamide) and reaction temperature were not successful. However preliminary experiments showed that mixtures of diastereomers **4cC** and **4cT** and their salts could be separated by means of combinations of fractionated crystallization, chromatography, and auxiliary reagents, and that the preparation of the enantiomers of **4cC** or **4cT**, respectively, will also be possible. Detailed procedures for the preparation of diastereomers and enantiomers of some pharmacologically highly active mixtures will be reported in a forth-coming paper.

Results of biological tests

Compounds **4a,c** and **5c** ((**C**:**T**)-ratios 2:1, 1.2:1, and 0.7:1) were tested for antibacterial (*Staphylococcus aureus*, ATCC 6538; *Enterococcus faecalis*, ATCC 29212; *Bacillus subtilis*, ATCC 1813; *Bacillus cereus*, ATCC 11778; *Escherichia coli*, ATCC 25922; *Pseudomonas aeruginosa*, ATCC 27853) and antifungal effects (*Candida albicans*, ATCC 10231; *Trichophyton mentagrophytes*, ATCC 9533; *Aspergillus niger*, ATCC 16404). The antimicrobial tests were carried out by means of the disk diffusion method [32]. At concentrations of 0.1 mg/cm³ (disk contents 0.02 cm³/0.06 cm³; disk diameter 6 mm/9 mm), none of the compounds exerted inhibitory effects to the tested microorganisms. Ciprofloxacin, chloramphenicol, amphotericin B, flucytosine, and other agents, used as standards for control, were highly active. Tests for pharmacodynamic activities are in progress. The results will be reported in due course.

Experimental

Melting points were determined on a *Kofler* melting point apparatus and are uncorrected. Thin-layer chromatograms (TLC) were run on TLC plastic sheets covered with silica gel 60 F254 (E. Merck, Darmstadt); eluation systems: toluene:methanol=80:20 (ES 1), toluene:methanol=80:40 (ES 2), toluene:methanol:glacial acetic acid=80:20:5 (ES 3). The spots were detected by visual examination under UV light (254 and 356 nm). Infrared spectra were recorded with Perkin-Elmer 881 and 2000 FTIR spectrophotometers in KBr disks, frequencies are reported in cm⁻¹ (s = strong, m = middle, w = weak).

NMR spectra were acquired on a Varian 400 MHz Unity Inova NMR spectrometer equipped with a Sun Sparc 5 computer system and operating at an observation frequency of 399.98 MHz for ¹H and 100.59 MHz for ¹³C and a temperature of 300°K. 1D and 2D NMR experiments were performed using a reverse geometry 5 mm broad-band probehead and a pulsed field gradient unit. The HH-COSY [26], *gs*-HSQC [27], *gs*-HMBC [28], 1D NOE difference [29], and selective 1D TOCSY [30] experiments were performed using pulse programs supplied by the manufacturer. The *gs*-HMBC experiment was optimized for a coupling constant of 8 Hz (62.5 ms). All NOEs were measured in degassed samples. For the 1D NOE experiments, 5 s pre-irradiation times were used. FIDs were exponentially multiplied prior to *Fourier* transformation (LB = 1 Hz). Subsaturating irradiation power levels (typically –6 dB) were carefully adjusted to avoid spill-over effects to adjactent signals. Selective 1D TOCSY experiments were achieved with a series of mixing times for each of the various compounds (typically 0.04–0.12 s). 15–25 mg of the substances were dissolved in 0.5 cm³ of deuterated solvents. All chemical shifts are reported as δ units (ppm) with *TMS* as internal standard. The assignment of atoms marked with an asterisk is not secured.

Mass spectra were taken with a Finnigan Mat 212 Spectrometer (EI, 120 ev, R = 1000) by *R. Saf*, Institute of Chemical Technology of Organic Materials, Technical University Graz. Elemental analyses (including all elements except oxygen) were performed by *J. Theiner*, Institute of Physical Chemistry, University of Vienna; they agreed favourably with the calculated values.

The biological tests were accomplished by Prof. Dr. *F. Reinthaler* and Mag. *U. Eibel*, Institute of Hygiene, Karl-Franzens-University Graz, Austria, according to Ref. [32]. The solutions applied for testing (0.1 mg/cm^3) were prepared by dissolving of 1 mg of **4a,c** and **5c** ((**C**:**T**)-ratios 2:1, 1.2:1, and 0.7:1) in a mixture of 1 cm³ *DMSO* and 0.25 mg glacial acetic acid and dilution with water to 10 cm^3 .

The applied enones, 2-butylidene- and 2-isobutylidenecyclohexanones **8a,b**, 2-benzylidene- and 2-(*p*-methylbenzylidene)cyclohexanones **8c,d**, and 2-benzylidene- and 2-(*p*-chlorobenzylidene)- α -tetralones **9c,e**, were prepared by base catalyzed aldol condensation as described earlier [19–21].

trans-3a-3a,4,5,6,7,7a-Hexahydro-2-benzimidazolamine hydrobromide ($20 \cdot \text{HBr}$; $C_7 H_{14} Br N_3$)

To a cooled solution of 24 g (0.21 mol) of (racemic) *trans*-1,2-cyclohexanediamine in 100 cm³ of ice- H_2O , a solution of 22 g (0.21 mol) of cyanogen bromide in a mixture of 100 cm³ H_2O and 20 cm³ *THF* was added dropwise with stirring at such a rate that the internal temperature did not exceed 30°C. When the addition was finished and the exothermic reaction subsided, the ice bath was removed. The reaction mixture was stirred at room temperature for 3 h, filtered, and evaporated to dryness. The residue was crystallized from ethanol.

Yield: 42.05 g (91%); m.p.: 205°C; IR (KBr): $\nu = 3450-2800$ s with 3200w, 3110w, 2950s, 2860m; 1674s, 1596s, 1550s, 1443m, 1379s, 1265s, 1099s, 686s, 616s cm⁻¹; ¹H NMR (*DMSO*-d₆, δ , 400 MHz; assignment proved by HH-COSY, *gs*-HSQC, NOE): 1.27 and 1.70 (qua m?, J = 9.6 Hz, and d, J = 10.5 Hz, 2×2H, H-5*ax*,6*ax* and H-5*eq*,6*eq*, 5-CH₂ and 6-CH₂), 1.33 and 2.00 (qua d, J = 11.2, 2.8 Hz, and d, J = 11.8 Hz, 2×2H, H-4*ax*,7*ax* and H-4*eq*,7*eq*, 4-CH₂ and 7-CH₂), 3.08 (m, 2H, H-3a and H-7a), 8.01 (s, broad, 4H, H-1, H-3, and NH₂) ppm; ¹³C NMR (*DMSO*-d₆, δ , 100 MHz): 23.28 (C-5 and C-6), 28.43 (C-4 and C-7), 62.07 (C-3a and C-7a), 161.75 (C-2) ppm.

General procedure for the preparation of the mixtures of 12α - and 12β -substituted trans- $6a\alpha$ -dodecahydrobenzimidazo[2,1-b]quinazolines **4a–dC** and **T**, 7α -substituted trans- $8a\beta$ - and trans- $8a\alpha$ -decahydrobenzimidazo[2,1-b]benzo[h]quinazolines **5c,eC** and **T**, and hydrochlorides of **4a,c,d** and **5c,eC** and **T**

Hydrobromide $20 \cdot \text{HBr}$ (8.80 g, 40 mmol) was added to a freshly prepared solution of sodium butylate (0.92 g (40 mmol) Na in 80 cm³ of dry butanol) and stirred for 0.5 h. Then, 40 mmol of the α,β -unsaturated ketones **8a–d** and **9c,e**, respectively, were added. The mixture is heated to reflux for the indicated time. After cooling, the reaction mixture was diluted with CHCl₃ and washed with H₂O to remove NaBr. The organic layer was dried over Na₂SO₄ and evaporated to dryness. For crystallization, the residue was triturated with the indicated solvent.

If the base didn't crystallize, the residue was suspended in 5 cm^3 ethanol. Then 4M ethanolic HCl was added (*pH* 3). The resulting solution was filtered and evaporated to dryness. The obtained residue was recrystallized from the indicated solvent. The same procedure was applied for the preparation of hydrochlorides from bases in general.

(2:1)-Mixture of trans- $6a\alpha$ - 12α - and 12β -propyl-1,2,3,4,5,6a,7,8,9,10,10a,12dodecahydrobenzimidazo[2,1-b]quinazoline (**4aC** and **4aT**; C₁₇H₂₇N₃) and (5:1)-mixture of **4aC** · HCl and **4aT** · HCl (C₁₇H₂₈ClN₃)

6.09 g Butylidenecyclohexanone **8a**; time = 2.5 h; solvent: acetone-methanol; TLC (ES 2): $R_f = 0.37$; colourless needles; m.p.: 185–187°C; yield: 4.1 g (37%); IR (KBr): $\nu = 3420/3210/3120$ m/w/w (NH), 2935/2860/2820s/m/w (CH₂), 1695 w (C=C-N), 1660/1625/1568m/s/s (C=N, NH), 1448/ 1438s/s (CH₂), 1377s cm⁻¹.

¹H NMR of **4aC** (CDCl₃, δ , 400 MHz; the carbon atoms of the propyl substituent are continuously numbered from 13 to 15): 0.87 (t, J = 7.2 Hz, 3H, 15-CH₃), 1.29 and 1.45 (2m, 2×1H, 14-CH₂), 1.30 and 2.06 (qua m, J = 10.4, and dm, J = 11.2 Hz, 2×1H, H-7*ax* and H-7*eq*), 1.33 and 1.80 (qua d, J = 11.2, 3.4 Hz, and dm, J = 12.8 Hz, 2×1H, H-9*ax* and H-9*eq*), 1.40 and 1.53 (2m, 2×1H, 13-CH₂), 1.43 and 1.56 (2m, 2×1H, H_a and H_b, 1-CH₂), 1.48 and 2.02 (qua d, J = 12.4, 2.8 Hz, and dd, J = 12.4, 2.8 Hz, 2×1H, H-10*ax* and H-10*eq*), 1.60 and 1.68 (2m, 2×1H, 2-CH₂), 1.60 (m, 2H, 3-CH₂), 1.64 and 1.78 (m and dm, J = 14.0 Hz, 2×1H, H-8*ax*^{*} and H-8*eq*), 2.01 (m, 2H, 4-CH₂), 2.80 (td, J = 11.3, 3.4 Hz, 1H, H-10a), 3.01 (td, J = 11.3, 3.4 Hz, 1H, H-6a), 3.91 (s, broad, 1H, H-12), 4.68 (broad, 1H, H-5) ppm; ¹³C NMR of **4aC** (CDCl₃, δ , 100 MHz): 14.37 (C-15), 16.15 (C-14), 23.05 (C-1^{*}), 23.15 (C-2^{*}), 23.93 (C-8), 24.37 (C-9), 25.72 (C-3), 29.89 (C-10), 30.16

(C-4), 30.67 (C-7), 35.13 (C-13^{*}), 58.87 (C-12), 60.29 (C-6a), 67.37 (C-10a), 104.24 (C-12a), 137.04 (C-4a), 157.79 (C-5a) ppm.

¹H NMR of **4aT** (CDCl₃, δ , 400 MHz; only significant signals cited): 0.85 (t, J = 7.2 Hz, 3H, 15-CH₃), 1.24–1.32 (2H, 14-CH₂), 1.28 and 1.99 (2m, 2×1H, H-7*ax*^{*} and H-7*eq*), 1.40 and 1.63 (2×1H, H_a and H_b, 1-CH₂), 1.41 (m, broad, 2H, 13-CH₂), 1.44 and 1.82 (2m, 2×1H, H-9*ax*^{*} and H-9*eq*), 1.58 (m, 2H, 3-CH₂^{*}), 1.60 and 1.71 (m and d, J = 12.6 Hz, 2×1H, H-8*ax*^{*} and H-8*eq*), 1.75 and 2.08 (qua d, J = 12.0, 3.2, and d, J = 12.0 Hz, 2×1H, H-10*ax* and H-10*eq*), 2.02 (m, 2H, 4-CH₂), 2.87 (m, 1H, H-10a), 2.91 (m, 1H, H-6a), 3.82 (t indicated, 1H, H-12), 4.68 (broad, 1H, H-5) ppm; ¹³C NMR of **4aT** (CDCl₃, δ , 100 MHz): 14.44 (C-15), 16.53 (C-14), 23.08 (C-1), 23.31 (C-2^{*}), 24.01 (C-8^{*}), 24.17 (C-9^{*}), 27.02 (C-3^{*}), 29.77 (C-10), 30.13 (C-4), 32.52 (C-13), 55.26 (C-12), 59.53 (C-6a), 62.22 (C-10a), 105.49 (C-12a), 138.45 (C-4a), 159.11 (C-5a) ppm.

(5:1)-Mixture of hydrochlorides $4aC \cdot HCl$ and $4aT \cdot HCl$

Pale yellow crystals; m.p.: 179–182°C (toluene-ethanol); TLC (ES 3): $R_f = 0.44$.

¹H NMR of **4a**C · HCl (*DMSO*-d₆, δ , 400 MHz): 0.89 (t, J = 7.3 Hz, 3H, 15-CH₃), 1.19–1.36 (2H, 14-CH₂), 1.24 and 1.78 (m, concealed, and d, J = 11.4 Hz, 2×1H, H-9*ax* and H-9*eq*), 1.30 and 1.70 (m, concealed, and d, J = 11.2 Hz, 2×1H, H-8*ax*^{*} and H-8*eq*), 1.35 and 2.08 (m, concealed, and dm, J = 12.8 Hz, 2×1H, H-7*ax* and H-7*eq*), 1.42 and 1.61 (2m, 2×1H, H_a and H_b, 1-CH₂), 1.48 (2H, 3-CH₂), 1.52 and 2.19 (m, concealed, and dm, J = 11.6 Hz, 2×1H, H-10*ax* and H-10*eq*), 1.55 (m, broad, 2H, 2-CH₂^{*}), 1.63–1.72 (2H, 13-CH₂), 2.07 (m, 2H, 4-CH₂), 3.25 (td, J = 8.8, 3.2 Hz, and m, overlapping, 2×1H, H-6a and H-10a), 4.17 (s, broad, 1H, H-12), 8.63 (s, 1H, 6-NH), 10.69 (s, 1H, 5-NH) ppm; ¹³C NMR of **4a**C · HCl (*DMSO*-d₆, δ , 100 MHz): 13.92 (C-15), 15.46 (C-14), 21.31 (C-3), 21.71 (C-2), 23.06 (C-8), 23.47 (C-9), 24.13 (C-1), 24.92 (C-4), 28.34 (C-7), 28.61 (C-10), 33.87 (C-13), 56.51 (C-12), 61.03 (C-10a), 66.12 (C-6a), 107.09 (C-12a), 126.47 (C-4a), 154.29 (C-5a) ppm.

¹H NMR of **4aT** · HCl (*DMSO*-d₆, δ , 400 MHz): 0.88 (t, J = 7.2 Hz, 3H, 15-CH₃), 0.98 and 1.25 (2m, 2×1H, 14-CH₂, 1.18 and 1.72 (2m, 2×1H, 9-CH₂^{*}), 1.22 and 1.65 (2m, 2×1H, 8-CH₂^{*}), 1.35 and 2.08 (m and dm, J = 11.8 Hz, 2×1H, H-7*ax* and H-7*eq*), 1.38 and 1.52 (2m, 2×1H, 8-CH₂^{*}), 1.35 (2m, 2×1H, 4, and H_b 1-CH₂), 1.48 (2H, 2-CH₂^{*}), 1.49 and 1.63 (2m, 2×1H, 13-CH₂), 1.51 and 2.17 (m and dm, J = 11.6 Hz, 2×1H, H-10*ax* and H-10*eq*), 1.54 (2H, 3-CH₂), 2.05 (m, 2H, 4-CH₂), 3.11 and 3.13 (2m, overlapping, 2×1H, H-10a and H-6a), 4.08 (s, broad, 1H, H-12), 8.45 (s, 1H, 6-NH), 10.99 (s, 1H, 5-NH) ppm; ¹³C NMR of **4aT** · HCl (*DMSO*-d₆, δ , 100 MHz): 13.79 (C-15), 15.06 (C-14), 21.41 (C-3), 21.59 (C-2), 23.36 (C-8), 24.68 (C-9), 24.69 (C-1), 26.02 (C-4), 27.98 (C-10), 28.34 (C-7), 30.99 (C-13), 53.91 (C-12), 61.16 (C-10a), 62.37 (C-6a), 107.89 (C-12a), 126.89 (C-4a), 156.09 (C-5a) ppm.

(2.3:1)-Mixture of trans- $6a\alpha$ - 12α - and 12β -isopropyl-1,2,3,4,5,6a,7,8,9,10,10a,12dodecahydrobenzimidazo[2,1-b]quinazoline (**4bC** and **4bT**; C₁₇H₂₇N₃)

6.09 g 2-Isobutylidenecyclohexanone (**8b**); time = 3.5 h. According to NMR, the crude residue (after evaporation, 6.5 g) consisted of a (1.5:1)-mixture of **4bC** and **4bT** (~5.7 g, 52%) and some impurities. Treatment with acetone gave a (2.3:1)-mixture of **4bC** and **4bT**; TLC (ES2): $R_f = 0.42$; colourless crystals; m.p.: 223°C; yield: 4.8 g (44%); IR (KBr): $\nu = 3419$ s, 3109m, 2930/2859/2836s/s/s, 1655/1625s/s, 1445s, 1371s, 1171s cm⁻¹.

¹H NMR of **4bC** (*DMSO*-d₆, δ , 400 MHz; the carbon atoms of the isopropyl substituent are numbered, as shown in Fig. 2, with 13, 14 and 14'): 0.83, 0.90, and 1.64 (2d, J = 7.2 Hz, and octet, J = 7.2 Hz, 2×3 H and 1H, 14'-CH₃, 14-CH₃ and 13-CH), 1.23 (2H, 3-CH₂^{*}), 1.25 and 1.73 (qua d, J = 10.0, 4.0 Hz, and dm, J = 10 Hz, 2×1 H, H-9*ax* and H-9*eq*), 1.27 and 1.70 (2m, overlapping, 2×1 H, H-8*ax* and H-8*eq*), 1.31 and 1.98 (qua m, J = 11.2 Hz, and dm, J = 11.2 Hz, 2×1 H, H-7*ax* and H-7*eq*), 1.34 (m, broad, 2H, 2-CH₂^{*}), 1.42 and 1.90 (qua d, J = 12.0, 3.6 Hz, and 4.0 Hz, and 4.

12.0 Hz, 2×1 H, H-10*ax* and H-10*eq*), 1.57 and 1.93 (m, and d, J = 14.6 Hz, 2×1 H, H_a and H_b, 1-CH₂), 1.95 (m, 2H, 4-CH₂), 2.82 (td, J = 11.2, 3.2 Hz, 1H, H-10a), 2.99 (td, J = 10.8, 3.2 Hz, 1H, H-6a), 3.59 (s, broad, 1H, H-12) ppm; ¹³C NMR of **4b**C (*DMSO*-d₆, δ , 100 MHz): 16.12 (C-14), 19.49 (C-14'), 22.02 (C-8*), 22.10 (C-3*), 22.76 (C-9*), 23.50 (C-10*), 23.76 (C-1*), 24.50 (C-2*), 28.13 (C-4*), 29.13 (C-10*), 29.49 (C-7), 35.48 (C-13), 62.42 (C-6a), 66.51 (C-10a), 62.67 (C-12), 102.81 (C-12a), 131.34 (C-4a), 149.82 (C-5a) ppm.

¹H NMR of **4bT** (*DMSO*-d₆, δ , 400 MHz; only significant signals cited): 0.81, 0.83, and 1.87 (2d, J = 7.2 Hz, and m, 2×3H and 1H, 14'-CH₃, 14-CH₃), 13-CH), 1.15 and 2.03 (td, J = 12.0, 3.6 Hz, and d, J = 12.0 Hz, 2×1H, H-10ax and H-10eq), 1.21 and 1.68 (2m, 2×1H, H_a and H_b, 1-CH₂), 1.28 and 1.93 (qua m, J = 10.8 Hz, and dm, J = 10.8 Hz, 2×1H, H-7ax and H-7eq), 1.30 and 1.89 (qua m, J = 12 Hz, and d, J = 12 Hz, 2×1H, H-9ax and H-9eq), 1.36 and 2.02 (m, overlapping, and d, J = 12.8 Hz, 2×1H, H-8ax^{*} and H-8eq), 1.96 (m, 2H, 4-CH₂), 2.73 (td, J = 10.8, 3.2 Hz, 1H, H-6a), 2.94 (td, J = 10.8, 3.2 Hz, 1H, H-10a), 3.57 (s, broad, 1H, H-12) ppm; ¹³C NMR of **4bT** (*DMSO*-d₆, δ , 100 MHz): 17.02 (C-14), 18.67 (C-14'), 22.68 (C-9), 22.97 (C-8^{*}), 23.22 (C-3^{*}), 23.50 (C-2^{*}), 23.65 (C-1^{*}), 28.40 (C-4^{*}), 29.13 (C-10^{*}), 29.38 (C-7^{*}), 30.74 (C-13), 59.37 (C-6a), 60.02 (C-12), 61.66 (C-10a), 103.51 (C-12a), 133.72 (C-4a), 150.64 (C-5a) ppm.

(1.2:1)-Mixture of trans- $6a\alpha$ - 12α - and 12β -phenyl-1,2,3,4,5,6a,7,8,9,10,10a,12dodecahydrobenzimidazo[2,1-b]quniazoline (**4cC** and **4cT**; C₂₀H₂₅N₃) and (4.5:1)-mixture of **4cC** · HCl and **4cT** · HCl (C₂₀H₂₆ClN₃)

7.45 g 2-Benzylidenecyclohexanone (8c); time = 2 h. According to NMR, the crude residue (after evaporation, 8.9 g) consisted of a (1:1)-mixture of 4cC and 4cT (~8.1 g, 66%) and some impurities. Treatment with diethylether gave, according to NMR, a (1.2:1)-mixture of 4cC and 4cT; TLC (ES2) $R_{\rm f} = 0.48$; colourless needles; m.p.: 225–227°C (ethanol); yield: 5.8 g (47%); MS: m/z(%) = 307 (M⁺, 30), 306 (M⁺-1, 12), 230 (M⁺-77, 100), 216 (M⁺-91, 28), 162 (21), 105 (13), 91 (4), 77 (C₆H₅⁺, 12), 38 (H³⁷Cl⁺, 4), 36 (H³⁵Cl⁺, 12); IR (KBr): $\nu = 3430/3210/3120$ m/w/w (NH), 3060/ 3005w/w (ArH), 2920/2860/2380s/m/m (CH₂), 1660s (C = C-N), 1630s (C = N, NH), 1490/1437w/s (CH₂), 1368s, 738m (C₆H₅) cm⁻¹.

¹H NMR of **4cC** (*DMSO*-d₆/CDCl₃, δ , 400 MHz; ratio of **4cC**:**4cT** = 7.5:1; for the numbering, see Table 1): 0.67 and 1.14 (qua d, J = 12.0, 3.8 Hz, and dm, J = 12.4 Hz, 2×1H, H-10*ax* and H-10*eq*), 1.13 and 1.50 (qua d, J = 13.0, 3.6 Hz, and d, J = 12.0 Hz, 2×1H, H-9*ax* and H-9*eq*), 1.15 and 1.65 (m, and dd, J = 12.0, 3.4 Hz, 2×1H, H-8*ax* and H-8*eq*), 1.25 and 1.47 (2×dm, J = 11.5 Hz, 2×1H, H_a and H_b, 1-CH₂), 1.34 and 1.96 (qua d, J = 12.0, 3.4 Hz, and dd, J = 12.4, 3.2 Hz, 2×1H, H-7*ax* and H-7*eq*), 1.53 (m, broad, 2H, 3-CH₂^{*}), 1.54 (m, broad, 2H, 2-CH₂^{*}), 2.09 (m, 2H, 4-CH₂), 2.81 (td, J = 11.6, 2.4 Hz, 1H, H-10a), 2.99 (td, J = 11.2, 3.2 Hz, 1H, H-6a), 4.62 (s, 1H, H-12), 7.23 (t, J = 6.4 Hz, 1H, H-16, *p*-H), 7.28 (t, J = 6.8 Hz, 2H, *m*-H), 7.37 (d, J = 6.8 Hz, 2H, *o*-H) ppm; ¹³C NMR of **4cC** (*DMSO*-d₆/CDCl₃, δ , 100 MHz): 22.90 (2C, C-2^{*} and C-3^{*}), 23.82 (C-8^{*}), 24.16 (C-9), 25.78 (C-1), 29.36 (C-10), 29.80 (C-7), 30.23 (C-4), 59.85 (C-6a), 64.77 (C-12), 67.79 (C-10a), 106.52 (C-12a), 127.44 (C-16, *p*-C), 128.06 (C-14, 18, *o*-C), 128.20 (C-15,17, *m*-C), 136.2 (C-4a^{*}), 144.24 (C-13, 1'-C), 157.37 (C-5a) ppm.

¹H NMR of **4cT** (*DMSO*-d₆/CDCl₃, δ , 400 MHz; ratio of **4cC**:**4cT** = 1:3): 0.99 and 1.63 (qua t, J = 13.6, 3.6 Hz, and d, $J = 13.6, 2 \times 1$ H, H-9ax and H-9eq), 1.15 and 1.85 (qua d, J = 12.4, 3.2 Hz, and d, $J = 12.4, 2 \times 1$ H, H-7ax and H-7eq), 1.16 and 1.58 (2m, 2×1 H, H-8ax and H-8eq), 1.18 and 1.91 (qua d, J = 12.2, 3.2 Hz, and dd, J = 12.2, 3.2 Hz, 2×1 H, H-10ax and H-10eq), 1.52 and 1.77 (2m, 2×1 H, H_a and H_b, 1-CH₂), 1.53 (m, broad, 2H, 3-CH₂^{*}), 1.35 (m, broad, 2H, 2-CH₂^{*}), 2.06 (m, 2H, 4-CH₂), 2.30 (td, J = 11.2, 3.2 Hz, 1H, H-10a), 2.85 (td, J = 11.2, 3.2 Hz, 1H, H-6a), 4.48 (s, 1H, H-12), 7.13 (dd, J = 7.8, 2.2 Hz, 2H, H-14,18, o-H), 7.17 (td, J = 7.2, 2 Hz, 1H, H-16, p-H), 7.21 (td, J = 7.2, 2.4 Hz, 2H, H-15,17, m-H) ppm; ¹³C NMR of **4cT** (*DMSO*-d₆/CDCl₃, δ , 100 MHz): 22.26 (C-2), 22.57 (C-3), 23.10 (C-9), 23.40 (C-8), 25.85 (C-1), 26.28 (C-10), 28.90

(C-7), 29.65 (C-4), 58.59 (C-6a), 60.28 (C-12), 61.67 (C-10a), 107.18 (C-12a), 127.27 (C-16, *p*-C), 127.08 (C-14,18, *o*-C), 127.93 (C-15,17, *m*-C), 136.75 (C-4a), 139.41 (C-13, 1'-C), 156.73 (C-5a) ppm.

(4.5:1)-Mixture of hydrochloride $4cC \cdot HCl$ and $4cT \cdot HCl$

Colourless plates; m.p.: 160–162°C (cyclohexane-ethanol); TLC (ES 3): $R_{\rm F} = 0.42$; IR (KBr): $\nu = 3500-2700$ s with 3380w, 3080m, 2920s, 2840m, 1710/1700/1630/1590/1560w/w/s/w/w cm⁻¹; ¹H (*DMSO*-d₆, δ , 400 MHz) and ¹³C NMR (*DMSO*-d₆, δ , 100 MHz): see Table 1.

(1.2:1)-Mixture of trans- $6a\alpha$ - 12α - and 12β -(p-tolyl)-1,2,3.4,5,6a,7,8,9,10,10a,12dodecahydrobenzimidazo[2,1-b]quinazoline (**4dC** and **4dT**; C₂₁H₂₇N₃) and (0.7:1)-mixture of **4dC** · HCl and **4dT** · HCl (C₂₁H₂₈ClN₃)

8.01 g of 2-(4-Methylbenzylidene)cyclohexanone (8d); time = 2.5 h; solvent: acetone; TLC (ES 1): $R_f = 0.43$; colourless crystals; m.p.: 221°C; yield: 9.9 g (77%).

¹H NMR of **4dC** (*DMSO*-d₆, δ , 400 MHz; numbering as in case of **4cC**, see Table 1; only significant signals cited): 0.62 and 1.08 (qua d, J = 10.8, 3.2 Hz, and dm, J = 12.0 Hz, 2×1H, H-10*ax* and H-10*eq*), 1.12 and 1.60 (2m, 2×1H, H-8*ax* and H-8*eq*), 1.22 and 1.45 (2m, 2×1H, H-9*ax*^{*} and H-9*eq*), 1.27 and 1.91 (2m, 2×1H, H-7*ax* and H-7*eq*), 1.41 and 1.60 (2m, 2×1H, H-9*ax*^{*} and H-9*eq*), 1.55 (m, broad, 2H, 3-CH₂^{*}), 1.94 (m, 2H, 4-CH₂), 2.27 (s, 3H, 19-CH₃, *p*-CH₃), 2.78 (td, J = 11.6, 3.2 Hz, 1H, H-10a), 2.88 (td, J = 11.6, 3.6 Hz, 1H, H-6a), 4.68 (s, 1H, H-12), 7.07 (d, J = 8.0 Hz, 2H, H-15,17, *m*-H), 7.19 (d, J = 8.0 Hz, 2H, H-14,18, *o*-H) ppm; ¹³C NMR of **4dC** (*DMSO*-d₆, δ , 100 MHz): 20.59 (C-19), 29.13 (C-4), 58.20 (C-6a), 63.2 (C-12), 66.4 (C-10a), 127.49 (C-14,18, *o*-C), 128.33 (C-15,17, *m*-C), 134.72 (C-16, *p*-C), 136.1 (C-13, 1'-C) ppm.

¹H NMR of **4dT** (*DMSO*-d₆, δ , 400 MHz): 0.97 and 1.65 (qua t, J = 13.6, 3.4 Hz, and d, J = 13.6, 2×1H, H-9*ax* and H-9*eq*), 1.13 and 1.87 (qua d, J = 12.8, 3.6 Hz, and dd, J = 11.8, 3.0 Hz, 2×1H, H-7*ax* and H-7*eq*), 1.19 and 1.60 (qua m, J = 11.6 Hz, and d, J = 12.8, 2×1H, H-8*ax* and H-8*eq*), 1.20 and 1.92 (m and d, J = 12.8 Hz, 2×1H, H-10*ax*^{*} and H-10*eq*), 1.38 and 1.53 (2m, 2×1H, 2-CH₂), 1.53 and 1.57 (2m, 2×1H, 3-CH₂^{*}), 1.53 and 1.78 (2m, 2×1H, H_a and H_b, 1-CH₂), 2.06 (m, 2H, 4-CH₂), 2.24 (td, J = 11.2, 3.4 Hz, 1H, H-10a), 2.28 (s, 3H, 19-CH₃, *p*-CH₃), 2.80 (td, J = 11.6, 3.2 Hz, 1H, H-6a), 4.48 (s, 1H, H-12), 7.04 (d, J = 8.0 Hz, 2H, H-15,17, *m*-H), 7.08 (d, J = 8.0 Hz, 2H, H-14,18, *o*-H) ppm; ¹³C NMR of **4dT** (*DMSO*-d₆, δ , 100 MHz): 20.59 (C-19), 22.39 (C-8^{*}), 22.55 (C-3^{*}), 22.65 (C-2), 23.49 (C-9^{*}), 25.83 (C-1), 28.30 (C-4), 28.34 (C-10), 29.13 (C-7), 58.56 (C-6a), 59.66 (C-12), 61.74 (C-10a), 106.93 (C-12a), 127.12 (C-14,18, *o*-C), 128.79 (C-15,17, *m*-C), 136.61 (C-13, 1'-C), 136.80 (C-16, *p*-C) ppm.

(0.7:1)-Mixture of hydrochlorides 4dC · HCl and 4dT · HCl

Colourless crystals; m.p.: 149°C (cyclohexane-ethanol); TLC (ES 3) $R_f = 0.40$; IR (KBr): $\nu = 3450-2750$ s with 2937/2861s/s, 1710/1634m/s, 1513m, 1447m, 1374m, 829/814m/m cm⁻¹.

¹H NMR of **4d**C · HCl (*DMSO*-d₆, δ , 400 MHz): 0.67 and 1.36 (qua d, J = 8.4, 3.2 Hz, and dm, J = 8.4 Hz, 2×1H, H-10*ax* and H-10*eq*), 1.04 and 1.54 (2m, 2×1H, H_a and H_b 1-CH₂), 1.08 and 1.41 (qua m, J = 13.6 Hz, and m, 2×1H, H-9*ax* and H-9*eq*), 1.25 and 1.40 (2m, 2×1H, 2-CH₂^{*}), 1.31 and 2.01 (2m, 2×1H, H-7*ax* and H-7*eq*), 1.20 and 1.43 (2m, broad, 2×1H, H-8*ax*^{*} and H-8*eq*^{*}), 1.50 (m, broad, 2H, 3-CH₂), 2.16 (m, 2H, 4-CH₂), 2.39 (s, 3H, 19-CH₃), 3.14 (m, 1H, H-6a), 3.29 (td, J = 10.8, 3.2 Hz, 1H, H-10a), 4.99 (s, 1H, H-12), 7.20 (d, J = 8.0 Hz, 2H, H-15,17, *m*-H), 7.27 (d, J = 8.0 Hz, 2H, H-14,18, *o*-H), 8.74 (s, 1H, 6-NH), 10.95 (s, 1H, 5-NH) ppm; ¹³C NMR of **4d**C · HCl (*DMSO*-d₆, δ , 100 MHz): 20.70 (C-19), 21.21 (C-1), 21.43 (C-3), 23.15 (C-2), 24.20 (C-9), 24.55 (C-8), 24.68 (C-7^{*}), 24.87 (C-4), 28.29 (C-10), 60.73 (C-12), 61.11 (C-6a), 66.43 (C-10a), 108.68

(C-12a), 124.69 (C-4a), 127.52 (C-14,18, *o*-C), 129.12 (C-15,17, *m*-C), 134.16 (C-13), 137.44 (C-16), 153.92 (C-5a) ppm.

¹H NMR of **4dT** · HCl (*DMSO*-d₆, δ , 400 MHz): 0.98 and 1.64 (qua m, J = 14.0 Hz, and m, 2×1 H, H-9*ax* and H-9*eq*), 1.23 and 2.07 (2m, 2×1 H, H-7*ax* and H-7*eq*), 1.26 and 2.04 (m, and d, J = 9.2 Hz, 2×1 H H-10*ax* and H-10*eq*), 1.28 and 1.60 (2m, 2×1 H, H-8*ax*^{*} and H-8*eq*^{*}), 1.39 and 1.88 (2m, 2×1 H, H_a and H_b, 1-CH₂), 1.45 (m, broad, 2H, 2-CH₂), 1.70 (m, broad, 2H, 3-CH₂), 1.98 (m, 2H, 4-CH₂), 2.29 (s, 3H, 19-CH₃), 2.47 (td, J = 11.6, 2.8 Hz, 1H, H-10a), 3.20 (tm, J = 11.6 Hz, 1H, H-6a), 4.95 (s, 1H, H-12), 7.15 (d, J = 8.4 Hz, 2H, H-14,18, *o*-H), 7.23 (d, J = 8.4 Hz, 2H, H-15,17, *m*-H), 8.71 (s, 1H, 6-NH), 11.27 (s, 1H, 5-NH) ppm; ¹C NMR of **4dT** · HCl (*DMSO*-d₆, δ , 100 MHz): 20.75 (C-19), 21.39 (C-2), 21.94 (C-3), 23.06 (C-9), 23.24 (C-8), 24.53 (C-1), 25.88 (C-4), 28.32 (C-7), 28.43 (C-10), 58.14 (C-12), 60.68 (C-6a), 62.89 (C-10a), 110.18 (C-12a), 125.54 (C-4a), 127.39 (C-14,18, *o*-C), 129.81 (C-15,17, *m*-C), 137.98 (C-16), 138.36 (C-13), 154.78 (C-5a) ppm.

(0.7:1)-Mixture of 7α -phenyl-trans- $8a\beta$ - and trans- $8a\alpha$ -5,6,7,8a,9,10,11,12,12a,13decahydrobenzimidazo[2,1-b]benzo[h]quinazoline (**5cC** and **5cT**; C₂₄H₂₅N₃) and (0.8:1)-mixture of **5cC** · HCl and **5cT** · HCl (C₂₄H₂₆ClN₃)

9.37 g 2-Benzylidene- α -tetralone (**9c**); time = 2.5 h; solvent: acetone; TLC (ES 2): $R_f = 0.40$; colourless needles; m.p.: 215–217°C (butanol); yield: 8.3 g (58%); IR (KBr): $\nu = 3440/3190/3150$ m/m/m (NH), 3062/3022w/w (ArH), 2938/2860/2830s/m/w (CH₂), 1630s (C = C–N), 1605s (C = N, NH, benzene rings), 1487/1450/1435w/m/s (CH₂), 1368s, 772/742s/s (phenyl, *o*-C₆H₄), 702s, 652m cm⁻¹.

¹H NMR of **5cC** (CDCl₃, δ , 400 MHz; only significant signals are cited; numbering in analogy to **5cC** · HCl, see Table 2): 0.72 and 1.58 (qua d, J = 12.0, 3.4 Hz, and m, 2×1H, H-9*ax* and H-9*eq*), 1.81 and 2.01 (2m, 2×1H, H_a and H_b, 6-CH₂), 2.50 (td, J = 11.8, 3.4 Hz, 1H, H-8a), 2.53 and 2.78 (2m, 2×1H, H_c and H_d, 5-CH₂), 3.03 (td, J = 11.8, 3.1 Hz, 1H, H-12a), 5.02 (s, 1H, H-7), 7.02 (t, J = 7.4 Hz, 1H, H-2), 7.07 (t, J = 7.6 Hz, 1H, H-3), 7.20 (d, J = 7.6 Hz, 1H, H-4), 7.29 (m, 3H, H-17,19, *m*-H, and H-18, *p*-H), 7.45 (d, J = 6.5 Hz, 2H, H-16,20, *o*-H), 7.80 (d, J = 7.4 Hz, 1H, H-1) ppm; ¹³C NMR of **5cC** (CDCl₃, δ , 100 MHz): 24.16 (C-6), 28.34 (C-5), 29.67 (C-9), 59.86 (C-12a), 64.50 (C-7), 67.78 (C-8a), 108.50 (C-6a), 125.96 (C-1), 126.46 (C-4), 126.58 (C-2), 127.41 (C-18, *p*-C), 127.60 (C-3), 127.85 (C-16,20, *o*-C), 128.63 (C-17,19, *m*-C), 135.91 (C-15, 1'-C), 159.28 (C-13a) ppm.

¹H NMR of **5cT** (CDCl₃, δ , 400 MHz): 1.37 and 2.05 (qua d, J = 12.3, 3.6 Hz, and d, J = 12.3 Hz, 2×1H, H-9*ax* and H-9*eq*), 2.00 and 2.20 (2m, 2×1H, H_a and H_b, 6-CH₂), 2.59 and 2.70 (2m, 2×1H, H_c and H_d, 5-CH₂), 2.89 (td, J = 11.2, 3.2 Hz, 1H, H-8a), 3.08 (td, J = 11.2, 3.2 Hz, 1H, H-12a), 4.78 (s, 1H, H-7), 7.10 (t, J = 7.6 Hz, 1H, H-2), 7.15 (t, J = 7.6 Hz, 1H, H-3), 7.18 (d, J = 7.6 Hz, 1H, H-4), 7.26 (d, J = 7.8 Hz, 2H, H-16,20, *o*-H), 7.29 (m, 3H, H-17,19, *m*-H and H-18, *p*-H), 7.86 (d, J = 7.6 Hz, H-1) ppm; ¹³C NMR of **5cT** (CDCl₃, δ , 100 MHz): 24.04 (C-6), 28.26 (C-9), 29.41 (C-5), 59.52 (C-12a), 61.27 (C-7), 62.32 (C-8a), 110.26 (C-6a), 122.99 (C-1), 126.09 (C-2), 126.54 (C-3), 126.78 (C-4), 127.11 (C-18, *p*-C), 128.08 (C-16,20, *o*-C), 128.45 (C-17,19, *m*-C), 135.75 (C-15, 1'-C), 159.38 (C-13a) ppm.

(0.8:1)-Mixture of hydrochlorides **5cC** · HCl and **5cT** · HCl

Colourless crystals, m.p.: 227–230°C (cyclohexane-ethanol); TLC (ES 2) $R_{\rm f} = 0.41$; IR (KBr): $\nu = 3400-2600$ s with 2940s, 2840m; 1700/1633w/s, 1540m, 1495/1452/1448m/m/m, 704s cm⁻¹; ¹H (*DMSO*-d₆, δ , 400 MHz) and ¹³C NMR (*DMSO*-d₆, δ , 100 MHz) of **5cC** · HCl and **5cT** · HCl: see Table 2.

Crude (1.5:2)-mixture of 7α -(4-chlorophenyl)-trans- $8a\alpha$ - and trans- $8a\beta$ -5,6,7,8a,9,10,11,12,12a,13decahydrobenzimidazo[2,1-b]benzo[h]quinazoline (**5eC** and **5eT**; C₂₄H₂₄ClN₃), and (1:2)-mixture of 7-(4-chlorophenyl)-5,6,8a,9,10,11,12,12a-octahydrobenzimidazo[2,1-b]benzo[h]quinazoline hydrochloride (**23e** · HCl; C₂₄H₂₄Cl₂N₃) and **5eT** · HCl (C₂₄H₂₅Cl₂N₃)

10.75 g 2-(4-Chlorobenzylidene)- α -tetralone (**9e**); time = 1.5 h. The crude mixture of the bases (10.5 g) consisted, according to NMR, of a (1.5: 2)-mixture of **5eC** and **5eT** (TLC, ES 2: $R_f = 0.48$) and some impurities. Treatment of the crude product with ethanolic HCl, evaporation of the solvent, and recrystallization of the residue from acetone yielded 8.54 g of a (1:2)-mixture of **23e** · HCl (~2.84 g (16.7%)) and **5eT** · HCl (~5.70 g (33.4%)); pale yellow crystals; m.p.: 225°C.

¹H NMR of **5eC** and **5eT** (CDCl₃, δ , 400 MHz; preliminary analysis of the crude mixture; numbering in analogy to **5cC** and **5cT** · HCl, see Table 2), signals for **5eC**: 0.94 (qua d, J = 12.4, 3.6 Hz, 1H, H-9*ax*), 2.56 (td, J = 11.4, 3.8 Hz, 1H, H-8a), 3.03 (td, J = 11.4, 3.2 Hz, 1H, H-12a), 4.98 (s, 1H, H-7) ppm; signals for **5eT**: 2.78 (td, J = 11.2, 3.6 Hz, 1H, H-8a), 3.10 (td, J = 11.8, 3.6 Hz, 1H, H-12a), 4.72 (s, 1H, H-7) ppm.

¹H NMR of **5eT** · HCl (*DMSO*-d₆, δ , 400 MHz): 1.04 and 1.70 (qua t, J = 12.8, 3.8 Hz, and m, 2×1H, H-10*ax* and H-10*eq*), 1.23 and 2.16 (qua d, J = 12.4, 3.6 Hz, and d, J = 12.4 Hz, 2×1H, H-12*ax* and H-12*eq*), 1.26 and 1.68 (qua m, J = 12.8 Hz, and m, 2×1H, H-11*ax* and H-11*eq*), 1.45 and 2.04 (qua d, J = 12.4, 3.6 Hz, and d, J = 12.4 Hz, 2×1H, H-9*ax* and H-9*eq*), 1.82 and 2.28 (2dt, J = 16.0, 7.6 Hz, 2×1H, H_a and H_b, 6-CH₂), 2.55 and 2.75 (2m, 2×1H, H_c and H_d, 5-CH₂), 2.61 (td, J = 11.6, 3.6 Hz, 1H, H-8a), 3.35 (td, J = 11.6, 3.6 Hz, 1H, H-12a), 5.41 (s, 1H, H-7), 7.22 (dm, J = 6.8 Hz, 1H, H-4), 7.28 (td, J = 8.4, 2.1 Hz, 1H, H-3), 7.32 (tm, J = 7.2 Hz, 1H, H-2), 7.42 (d, J = 8.4 Hz, 2H, H-16,20, *o*-H), 7.52 (d, J = 8.4 Hz, 2H, H-17,19, *m*-H), 7.75 (dd, J = 8.4, 1.2 Hz, 1H, H-1), 8.62 (s, 1H, 13-NH), 12.07 (s, 1H, 14-NH) ppm; ¹³C NMR of **5eT** · HCl (*DMSO*-D₆, δ , 100 MHz): 23.02 (C-10), 23.27 (C-11^{*}), 23.38 (C-6), 25.92 (C-9), 26.93 (C-5), 28.27 (C-12), 57.28 (C-7), 61.12 (C-12a), 62.99 (C-8a), 112.65 (C-6a), 121.73 (C-1), 124.97 (C-14a), 126.62 (C-3), 126.99 (C-14b), 127.98 (C-4), 128.74 (C-2), 129.48 (C-17,19, *m*-C), 129.75 (C-16,20, *o*-C), 133.89 (C-18, *p*-C), 135.45 (C-4a), 135.79 (C-15, 1'-C), 156.22 (C-13a) ppm.

¹H NMR of **23e** · HCl (*DMSO*-d₆, δ , 400 MHz): 0.80 and 1.64 (qua m, J = 12.4 Hz, and d, J = 12.0 Hz, 2×1H, H-10*ax* and H-10*eq*^{*}), 1.18 and 1.65 (m, concealed, and d, J = 12.0 Hz, 2×1H, H-11*ax*^{*} and H-11*eq*), 1.28 and 2.04 (m, concealed, and d, J = 9.6 Hz, 2H, H-12*ax*^{*} and H-12*eq*), 1.82 and 2.32 (2m, concealed, 2×1H, H-9*ax* and H-9*eq*), 2.08 and 2.20 (2m, concealed, 2×1H, H_a and H_b, 6-CH₂), 2.75–3.0 (m, concealed, 2H, 5-CH₂), 3.44 (td, J = 11.6, 4.4 Hz, 1H, H-8a), 4.53 (m, broad, 1H, H-12a), 7.33 (d, J = 8.6 Hz, 1H, H-4), 7.42 (concealed, 1H, H-2^{*}), 7.50 (concealed, 2H, H-17,19, *m*-H), 7.53 (concealed, 1H, H-3^{*}), 7.65 (m, 2H, H-16,20, *o*-H), 8.22 (dd, J = 8.4, 1.2 Hz, 1H, H-1), 8.44 (s, 1H, 13-NH) ppm; ¹³C NMR of **23e** · HCl (*DMSO*-d₆, δ , 100 MHz): 22.92 (C-10^{*}), 23.13 (C-9^{*}), 23.70 (C-6^{*}), 23.80 (C-5), 24.18 (C-11), 29.84 (C-12), 47.83 (C-12a), 63.38 (C-8a), 112.23 (C-6a), 126.42 (C-1), 127.20 (C-2), 132.71 (C-3), 128.37 (C-4), 129.34 (C-17,19, *m*-C^{*}), 130.76 (C-16,20, *o*-C^{*}), 130.26 (C-18, *p*-H), 130.76 (C-16), 130.89 (C-14b), 133.21 (C-4a), 134.66 (C-15, 1'-C), 154.30 (C-13a), 156.57 (C-7), 164.78 (C-14a) ppm.

Acknowledgments

Financial and material support of the work by KRKA Company, Novo Mesto, Slovenia (Mag. E. Rustja, Prof. M. Japelj, Mag. S. Zalar) is gratefully acknowledged.

References

- [1] For part I, see Abou El Ella D, Gößnitzer E, Wendelin W (1996) J Heterocyclic Chem 33: 373
- [2] Presented in part at the Fifteenth International Congress of Heterocyclic Chemistry, Taipei, Taiwan (1995) Abstract book, PO3-305

- [3] Wendelin W, Schermanz K, Kerbl J (1983) Monatsh Chem 114: 717
- [4] Wendelin W, Kerbl J (1984) Montash Chem 115: 309
- [5] Wendelin W, Schermanz K (1984) J Heterocyclic Chem 21: 65
- [6] Wendelin W, Schramm HW, Blasi-Rabassa A (1985) Monatsh Chem 116: 385
- [7] Wendelin W, Schermanz K, Egger P, Gößnitzer E (1990) Arch Pharm 323: 647
- [8] Gößnitzer E, Wendelin W, Hocevar-Korosec M, Fellner H (1994) Sci Pharm 62: 178
- [9] Wendelin W, Schermanz K, Blasi-Rabassa A, Gößnitzer E (1989) Sci Pharm 57: 230
- [10] Wendelin W et al (unpublished results / in preparation)
- [11] Abou El Ella D, Gößnitzer E, Wendelin W (1995) Hongkong International Symposium on Heterocyclic Chemistry, Abstract Book. The University of Hongkong, p 108
- [12] Desenko SM, Orlov VD (1989) Khim Geterotsikl Soedin 8: 1071
- [13] Desenko SM, Orlov VD, Lipson VV, Estrada Kh (1991) Khim Geterotsikl Soedin 9: 1215
- [14] Bajwa JS, Sykes PS (1979) J Chem Soc Perkin Trans I, 3085
- [15] Graubaum H, Martin D (1982) J Prakt Chem 324: 569
- [16] Popov II Boroshko SL, Tertov BA (1989) Khim Geterotsikl Soedin 8: 273
- [17] Lipson VV, Desenko SM, Orlov VD, Ryndina YN, Chuvurin AV, Gorbenko NI, Kirichenko AA (1994) Khim-Farm Zh 28: 14 [Chem Abstr (1995) 123: 246058]
- [18] Cooper K (Pfizer Ltd, Pfizer Inc) (1990) PCT Int Appl WO 90/10632 [Chem Abstr (1991) 114: 102038]
- [19] Lardelli, G, Lamberti V, Weller WT, De Jonge AP (1967) Chem Abstr 67: 32309; Tilichenko MN, Barbulescu E, Barbulescu N (1961) Rec Trav Chim Pays-Bas 12: 631
- [20] Vorländer D, Kunze K (1926) Ber Dtsch Chem Ges 59: 2078; Poggi R, Sacchi S (1940) Gazz chim ital 70: 269
- [21] Hassner A, Cromwell NH (1957) J Am Chem Soc 79: 230; Cromwell NH, Bamburg RE (1959) J Am Chem Soc 81: 4294
- [22] Dietrich B, Fyles DL, Lehn JM (1979) Helv Chim Acta 62: 2763
- [23] Relative positions are designated by application of the α,β system [25]. Accordingly, the substituent at the chiral center with the lowest locant (H-6a in case of **4C**,**T**, aryl at C-7 in case of **5C**,**T**) is always designated as α and serves as reference point. In order to achieve proper presentations of the formulae and stereo-formulae, α -substituents in Schemes and Figures are drawn, as required, below or above the ring plane. Axially and equatorially directed protons are marked with *ax* and *eq*, respectively.
- [24] All reactions were carried out with racemic *trans*-3a-20 and yielded mixtures of racemic diastereomers 4C,T and 5C,T, respectively. In order to point out clearly the steric relations of α and β -arranged substituents, the Schemes and Figures show, as substitutes for racemates, only enantiomers derived from either (3a*R*,7a*R*)-20 or (3a*S*,7a*S*)-20.
- [25] International Union of Pure and Applied Chemistry, Commission on Nomenclature of Organic Chemistry (Rigandy J, Klesny SP, 1979), Nomenclature of Organic Chemistry, Section E-4.11 (Extension of the α,β system). Pergamon Press, Oxford, New York, Toronto, Sydney, Paris, Frankfurt, p 482
- [26] Bax A, Freeman R, (1981) J Magn Reson 44: 542
- [27] Kay LE, Keifer P, Saarinen T (1992) J Am Chem Soc 114: 10663
- [28] Wilker W, Leibfritz D, Kerssebaum R, Bermel W (1993) Magn Reson Chem 31: 287
- [29] Kinns M, Sanders JKM (1984) J Magn Reson 56: 518
- [30] Kessler H, Oschkinat H, Griesinger, C, Bermel W (1986) J Magn Reson 70: 106
- [31] Gößnitzer E (1994) PhD Thesis, Karl Franzens University Graz, p 35
- [32] Abd El Nabi OM, Reisinger EC, Reinthaler FF, Still F, Eibel U, Krejs GJ (1992) J Ethnopharmacol 37: 77

Received November 3, 1999. Accepted November 30, 1999